

UltraTech Cement Limited Unit: Vikram Cement Works

Team Leader

Name	Jasmin Bhavsar
Designation	General Manager- Process
Mail ID	Jasmin.bhaysar@adityabirla.com

General Manager- Quality Control

Rina.shinde@adityabirla.com

Team Member/ Presenter's

Vivek Sharma

Asst. Manager (TS)

vivek.v.sharma@adityabirla.com

Company Profile: Unit Introduction

UltraTech Cement Ltd – Vikram Cement Works

UTCL : A part of ABG which is the best employer in India and Asia Pacific region.

- Vikram Cement Works : A Unit of UltraTech which is Third largest Cement producer in World (Ex-China).
- 46 MW Captive Thermal Power Plant (2X23MW).
- First Cement Plant in India acknowledged as pioneer of TPM, JIPM Japan in 1995
- First Cement plant in India to obtain ISO 14001 in 1997, EMS Certification from DNV
- Certified with ISO 9001, 14001, ISO45001, ISO 50000, ISO 27001, SA8000 standards
- Certified with ISO50001 & Implemented Energy Policy in 2013
- Adopted WCM Excellence Model & Achieved Two times Gold award
- In year 2019 Sept, unit awarded with CII National Excellent Energy Efficiency Award & stood Ist.

Major Sections - Specifications

Line-1 Section	Equipment Type	Make	Installed Capacity	Operating Capacity		
Kiln& Preheater	6 stage, single string with SLC	KHD Humboldt	1500 TPD	2850 TPD		
Raw Mill	VRM	Loesche	135 TPH	200 ТРН		
Cement Mill	Ball	KHD	140 TPH	150 TPH		
Line-2 Section	Equipment Type	Make	Installed Capacity	Operating Capacity		
Kiln& Preheater	6 stage, single string with SLC	KHD Humboldt	1500 TPD	2850 TPD		
Raw Mill	VRM	Loesche	135 TPH	200 ТРН		
Cement Mill	Ball	KHD	140 TPH	150 TPH		

Line-3 Section	Equipment Type	Make	Installed Capacity	Operating Capacity
Crusher	Single	Beumer	1800 TPH	
Kiln& Preheater	6 stage, double string with ILC	Krupp Polysius	3000 TPD	4400 TPD
Raw Mill	Ball	Krupp Polysius	250 ТРН	285 ТРН
Cement Mill	Ball	Krupp Polysius	165 TPH	175 TPH

Sp. Thermal Energy Consumption (FY 20 to FY 22)

Sp. Electrical Energy Consumption (FY 20 to FY 22)

SPC reduction in initiatives..(Up to Clinkerisation Power)

FY 2017-18

57.68

• With average out put of 9449, Power consumption was high.

FY 2018-19

59.87

With average out put of 9300,Power consumption was high.
Power reduction initiatives started by reducing ideal running time of equipment
Implemented logics to optimized running of equipment

FY 2019-20

56.98

•With average out put of 9145, Power consumption deviation reduced nearest to target.

- •False air reduction across preheater from 14 % to 11%
- •Optimization of blaster operation reduced axillary power from 2.4 to 2.2

FY 2020-21

•With average out put of 9169,Power consumption become lower than target

- -power reduced by 0.3 kw/t clk by reducing in specific air of cooler from 2.19 to 1.9 Nm3/Kg Clk
- Power reduced by 0.3 Kw/t clk due to reduction in specific air of PH fan from 1.48 to 1.41 Nm3/Kg Clk.
- •Power reduced by 0.2 kw/t clk by optimization of Compressed air power from 2.2 KWH / MT Clinker to 1.9 Kwh/Mt

Achieved ever lowest

clinkerisation

power

55.75

FY 2021-22

- Further optimization in specific air in PH & Cooler
- Further reduction in False air ingress (Target lower than 9%)
- Process Optimization by digitalization through advance PID tuning
- Maximum utilization of tri lobe blower in kiln firing

SPC reduction initiatives.. (Combined Kiln Power)

Strategic initiatives to reduce cost (Coal Mill section)

48.54

FY 2018-19 Target :49.64

47.22

- With average out put of 10 tph, Power consumption was high.
- 100% petcoke grinding (low residue requirement)

FY 2019-20 Target :48.64

42.19

- 100% petcoke grinding.
- False air reduction across coal mill section from 18 % to 16%
- Optimization of fan inlet cone; removal of venturi at fan inlet.
- Nozzle dimension optimization.

FY 2020-21 Target :47.77

- Grinding separately Petcoke & Bituminous coal for Kiln and Calciner firing.
- False air reduction across coal mill section from 16 % to 15%
- Coal Mill BH (old) fan replacement with new high efficiency fan.

37.28

FY 2021-22 Target :43.90

- •With combined grinding of petcoke and bituminous coal
- •Replacement of gravel gate with designed gap.
- •Dynamic separator Seal gap adjusted as per design
- •Optimization of table speed, fan flow and separator RPM
- •Further reduction in False air ingression
- Process Optimization by digitalization through PID tuning
- •Reduction in ideal running of coal transport belt during rain season.

Achieved ever lowest combined TYD power 37.28 Kwh/Mt (Saving of 1.24 Cr.

Variance Matrix

Demonsterne					
		2020-21	2021-22	Variance	Reason for Variance
Sp. Thermal Energy Consumption	(kcal/kg of clinker)	690.88	690.82	0.06	Improved
	Up to Clinker (Kwh / MT clinker)	56.98	55.75	1.23	Improved 2.15%
Sp. Electrical Energy Consumption	Overall Cement (Kwh/Mt Cement)	75.20	73.73	1.47	Improved 1.95%
	OPC (Kwh/MT Cement)	29.67	29.69	-0.02	
	PPC (Kwh/MT Cement)	30.13	29.40	0.73	Improved 2.42%
Fly ash absorption	%	28.47	30.99	2.52	Improved
Solar generation power mix	%	0	6.00	6.00	Improved

ADITYA BIRLA

Plant performance & Benchmarking with Ultra Tech units Confederation of Indian Industry

Road Map-EnCon Journey & Business Savings

Major EnCon projects planned in FY 2022-23

SI. N o.	Project Description	Annual Electrical Saving	Annual Thermal Saving	Investment		
		(Million Kwh)	(Million Kcal)	(Rs. In Million)		
1.	Cement transfer (from L-3 Cement mill to L-2 Silo) through Air slide instead of pneumatic system	0.4204	0	9.7		
2.	482 KWp rooftop solar plant installation at Staff and Durga colony (Roof top solar at various locations(0.48 MWp)	0.6362	0	22		
3.	Line-1 &2 Cooler upgradation for capacity enhancement and thermal efficiency improvement.	0	60000	Under Study		
4.	13 MW WHRS plant installation	1000	0	1350		
5.	Installation of new solar power plant of 1.5MWp	4.32	0	21.5		
6.	Raw Mill recirculation system	0.63	0	Under Study		

Innovative Project to increase Plastic consumption

Pyro Firing Optimization

Calciner temp variation reduced resulting in stable plant operation, averted cyclone jamming & reducing conditions.

Confederation of Indian Industry

+10 to -10 deg C

+60 to -60 deg C

- 1. Frequent Cyclone Jamming & reducing conditions avoided.
- 2. Stable operation , No process disturbance.
- 3. Minimum PreCalciner temperature variation reduced.

Innovative Project-Raw Mill 3 Drying Chamber removal

Theme	Raw mill 3 Drying chamber removal work
Problem	Raw Mill-3 was initially designed with drying chamber which was contributing to unnecessary extra power consumption
Solution	Removed the drying chamber (Wt. of drying chamber 7.5 MT) Power Reduction- 40Kw/hr.
Benefit	Overall saving 40 Kwh approx Saving achieved of Rs. 17.65 Lac @ Rs. 6.78 per unit.

Innovative project- Power Saving through fan modification

Best Practices in the Plant (Non Energy Efficiency)

Digitization

\square Pyro firing PreCalciner PID loop

Coldiner tamp variation was minimum, resulting in atable plant operation & averted cyclone jamming conditions

□ Water Harvesting and rare species plantation

Biodiversity

 \Box Touch less elevator operation.

Innovation

Equipment Safety

CII

Confederation of Indian Industry

 \Box Belt tear Arrangement Hook-up with DCS.

Waste Water Management Sewage Treatment Plant

Renewable Energy Uses

Green Power

- 8.9 MWp Solar power installation done and power generate Avg. 45 to 50 MW/day.
- 482KWp Roof top solar plates installed at Durga colony and staff colony school buildings.
- **Study have been done for 13 MW WHRS.**
- 1.5MWp Expansion is going on at Loader colony area
- Feasibility study is planned for roof top solar plants at thermal power plant

100% Green Building :

VCW Hospital, ABPS School , ABHSS- School , e3 Cinema Hall, Shopping Complex, and young manager home buildings

8.9 MWp Solar power Generating 45 to 50 MW/day power

482 KWp Roof top Solar plats power Generating Power 1.5 to 2.35 MW/day

Utilisation of Renewable Energy sources

Year	Technology(Electrical)	of gy	Onsite/Offsite	Installed Capacity (MW)	Ge (mil	neration lion kWh)	% of overall electrical energy		
FY 2021-22	Power Generation	Sola	ar	Onsite	1.4028 0.59				
	Capacity Addition			Investmen	t/Remarks		10		
1. 8.9 MW So	olar plant		Agre with equiv	ement with M/s A UltraTech share o valent to Rs. 30 M	mplus Dakshin po f 26% equity illion	wer	Con	npliance	
2. 50 MW H	ybrid (Solar+Wind)		Ultra Adity a sha Millio	Tech has a 25 yea a Birla Renewable are of 10 MW equi on.					
3. Installation 1.5MWp	n of new solar power plant	t of	Rs. 2	1.5 Million					

Waste utilized as fuel & alternative raw material

Year	Plastic Waste Cons.	Total AFR	Plastic Waste as percentage of Total	Carbon Black V/s Plastic
	Quantity	Quantity	AFR	12686.92
FY -20	1057.22	28570.37	3.70%	10000 9557.56
FY -21	1267.20	27890.64	4.54%	8000 7535.23 6000
FY -22	7535.23	33111.37	22.75%	4000
Year	Waste as Raw Material	Quantity	Savings by Substitution (Rs. Lakhs)	2000 <u>562.58 1057.22</u> 1267.2 523.69
FY -20	NIL	-	-	FY-19 FY-20 FY-21 FY-22 —Carbon black MT —Plastic Waste MT
FY -21	a) Red Mud b) Aralumina	a) 575.97 MT b) 1183.204	348.76	FY-19 FY-20 FY-21 FY-22

Red Mud in place of Laterite , Aralumina in place of Bauxite

Infrastructure for AFR processing

Storage and Feeding Hoppers

Unloading of Alternate Fuel

Mix Feeding belt

GHG inventorization and publication

Action Plan

Increased TSR% as fuel (already using 25% in Line-3)

10MW Hybrid (Solar+Wind) plant under study/proposal

WHRS installation of capacity 13 MW in planning stage for FY-23

Green Purchase Policy

UltraTech Cement Ltd Vikram Cement Works

Green Procurement Policy

1. INTRODUCTION

Green Procurement Policy is an integral part of the Sustainability policy and UltraTech Cement Ltd (UTCL) formal procedures and considerations for purchasing goods and services. Green Procurement incorporates human health and environmental concerns into the search for high quality efficient products and services at competitive prices UTCL ranks environmental sustainability as one of its top priorities and is committed to following responsible business practices by contributing to environmental protection and enhancing people performance by green procurement and services while ensuring business growth for its supply chain. Along with customers and investors interest towards green operations, it also helps reduce operational cost in the form of resource efficiency and reduced wastage. Green procurement ensures social and environmental standards from suppliers

2. SCOPE

This policy shall apply to all supply chain partners and shall impact all purchases and procurement for the organization.

3. OUR COMMITMENT

UTCL undeterred focus on good corporate governance is strengthened by our commitment to sustainable development and our short-term and long-term goals. Green procurement policy helps us make purchase decisions that are socially and environmentally responsible. It helps in improving operational efficiency, mitigate any risks including regulatory risks and enhance us as a sustainable brand. We believe that environmentally sustainable business operations have become a normative practice and forms a key part of our sustainability strategy and governance practices.

4. PROCUREMENT POLICY

UTCL seeks to reduce the environment impacts of our procurement process and also encourage our suppliers to adopt sustainable supply chain practices. UTCL shall engage with our supply chain partners and shall include the following considerations into procurement decisions

 Encouraging suppliers to deliver products/services with minimal negative impact on environment and adopt safe practices in the cycle from production to delivery

Prefer products that are eco-friendly, energy efficient and less polluting.

- · Prefer products that have energy star ratings or green certifications
- · Disposing goods to authorized agencies/recyclers in environmentally friendly manner

- · Using products that are water efficient and reduce water usage
- Consider Life Cycle Cost during procurement activities
- Procure less toxic products and chemicals to reduce health effects
- · Utilizing clean technology and/or clean fuels
- · Monitoring, evaluating sustainability performance and identifying improvement opportunities
- · Reducing environmental footprints by means of material, energy & water conservation
- Encouraging logistics optimization, local buying and using Circular economy principles for waste management using 4 R (Reduce, Recover, Recycle & Reuse)
- · Promoting a safe and healthy workplace for the employees
- Promoting sustainability awareness and green work culture among associates to reduce emissions
- · Enhancing sustainability within their own supply chain
- · Procuring recycled/part-recycled products to optimize resource consumption

5. POLICY REVIEW

The policy will be owned by Procurement team & Corporate Sustainability who will be responsible for making suitable amendments, if any, from time to time.

Unit Head

Energy Management System Certification- Journey

ADITYA BIRLA

DNV

MANAGEMENT SYSTEM CERTIFICATE

Colditate no. Initial cellification ante 10000179107-4181: Perk-NE 22 March 2013

Vanil 28 August 2021 - 27 June 2028 Raping date of task certification cycle 27 June 2027 Eddo of bell recentification 38 July 2021

This is to certify that the management system of UltraTech Cement Limited (Unit: Vikram Cement

Works)

Vikramnagar, P.O. Khor, District Neemuch - 458470, Madhya Pradesh, India

has been found to conform to the Energy Management System standard: ISO 50001:2018

This certificate is valid for the following scope: Manufacture of cement

Anne set state Reserved, 304 VIII (1) VIII (2) VIIII

ISO 50001-2018 Energy Management System Audit Certificate Valid till 2024

Energy review

LS Crusher **Energy Review & Action Task Force** • Team Leader- Mr. Rajendra Gandhewar Raw Mill Energy Review meeting chaired by Unit head • Team Leader- Mr. Jasmin Bhavsar Kiln & Coal Mill • Team Leader- Mr. Asgar Ali Packing Plant & CHP • Team Leader- Mr. S.K.Bhoothra Compressor • Team Leader- Mr. Sanjay Lonkar TPP • Team Leader- Mr. Praveen Vijayvargiya **False Air** • Team Leader- Mr. Rajendra Gandhewar **AFR** – Consumption & procurement • Team Leader- Ms. Rina Shinde & Mr. Madugula Krishna Mohan **Cement Mill** • Team Leader-Mr. Jasmin Bhavsar Digitalization • Team Leader- Mr. Umesh Paliwal

Shop Floor awareness on Energy & Environment

Confederation of Indian Industry

Shop floor awareness among employees & workmen

CEMENT MILL

MPSS

TPP

COAL CRUSHER

Energy Awareness Measures :

- 1. In-house Trainings, Seminars and External Programs on ENCON .
- 2. Various competitions on Energy Conservation Program (Poster, Slogan, etc.) involving all Company employees, Contract employees, Housewives, School children etc.
- 3. Poster and flex banners displayed at various plant sites
- 4. Recognition & appreciation by distribution of Awards, token gift and Suggestion Schemes.

Activities on Energy & Environment awareness

Confederation of Indian Industry

UH Rewarding Employees for their Participation

Communication on Energy

Awareness on Energy

Energy monitoring System & Format

Confederation of Indian Industry

🕼 Liet Edit Coto Pottir	ac Ouctom	Holp								I I I SA	D		🖾 jist Sdit Sate S	System - Belp							
	nys oysienn		. п. л. л	աւտեր	1 AN 1 100 1								• •	4 ≌ €	ତ ଶା 🖃	0001001	ចរាខ 🛛	12130	žh.		
v				ធាតារា							3.00		Combined Fower Summe	ary Report							
Daily Power Dev	iation Re	port																			
	¥ 🖻 🖹	B 🛛 🗄		🚹 🚹 Select	tions K	K +)							Contributed Rower Summary Report								
																085.042	FORD, SCHEMIN I	eran			
From Date : 01.01.20	12 TO Date	e : 18.01.2	2012		Cement M VIKRAM C	WER DEVIATIO anufacturing EMENT - WORKS	JN REPURI 9 Division 6 UNIT1					•				Cenero R Verene es	SATIONALIO DO SECTI PODIS	490.08			
Section Name	Units	Output	RHrs	TPH	Load KW	Load Inst	Load%	Sp.PerT Na	Stat. Targ	Roll Targe	Dev		Bene (191, 65, 536)								
						400			0.44	0.44	0.11										
B. CRUSHER NOTOR						400			0.44	0.44	0.44		Researce	ATE Scott Des	All Autility	ATT Bet Com	AD Confidence	ADD Confiden	ETE George Den	HD Sunitary	210 Xe
												-	Di Sevenciat		1,60,00	1,60,01		6.8-		26,200,00	26.20
*CRUSHER LS-LSCR01						850			1.20	1.20	1.28		C Demonstration.	658,000.00	\$8,510.00	127,403.02	19.75	34.52	24, 825, 000, 00	3,517,481,02	21,705,50
													RE2 CEREMITOR								
CRUSHER OVERALL													8: 2-3: 4112-					_			
													State Elec. Seerd	34,200.00		94.20.02	6.75	5.63	2,755,600.00		3,755,50
*CRUSHER OVERALL.													TEC Purchase								
													TRX SNIA								
A DAM MILL ANY	7 920	4 756	24,00	109.2	226	975	27	1.65	1.74	1.74	0.0		Power Supplied to Fleat	20,20.02	96,223,03	656,365,05			21.81,681.X	2,515,581,02	24,407,90
D DANNEAL TRANSFER	1,023	4,750	24.00	100.2	520	013	JI	1.03	1.04	1.74	0.03										
D.RAWIEAL TRANSFER	00.447	4,700	24.00	190.2	4 050	000		0.00	0.00	0.00	0.40		Character Power Summery Report								
C. RAV MILL MUTUR	32,447	4,756	24.00	198.2	1,352	1,700	88	6.82	6.66	6.66	0.16										
D. RAW MILL FAN	26,608	4,756	24.00	198.2	1,109	1,450	76	5.60	5.65	5.65	0.06		THE TALL OF THE DATE OF THE CONTRACTOR	NA SERVICE							
													age and the party party in	and services of							
*RAW MILL:U1RAML1	66,884	4,756	24.00	198.2	2,787	4,675		14.86	14.05	14.05	0.01										
																		_			
RAWMILL OVERALL	66,884	4,756	24.00	198.2	2,787			14.06			14.06		Jelaciji	UNTE JORGY	071 Troite	UNIX DORES	IRCh Todate	0817 2083	S USUS TROATS	UNTN DORS	S UEST
													DS STELEACTOR								
*RAW MILL:OVERALL	66,884	4,756	24.00	198.2	2,787			14.06			14.06		P ADILING			200,000	28,161,300	801.10	\$5,100.55		
													TO OPERATION	343,253,263	12222000 000	245, 022, 085	25,103,200	86.1.1.	25, 100.767		
A CONTRACT ANY	2 296	262	10.99	13.2	111	289	49	8.42	8 30	8 39	A 12		IS STRILLING	42, 310, 363	1446, 202.000	42,730,000	1150,949,000				
D CONL TRANSPORT	0.00	000	E 04	50.0	450	4 000	40	0.42	0.30	0.00	0.72		TRANSIES.OF DOES	1,002,002	10,100,000	1,152,000	10,963,000				
B. GUAL INAMOPUNI	820	202	0.24	00.0	501	1,000	10	3.10	2.40	2.40	0.75		NET TO DORER	215, 201, 302	10854568.080	381, 530,000	20874151.000				
C. COAL MILL MOTOR	3,781	262	19.41	13.5	195	366	65	14.43	12.50	12.58	1.93		VER GENERATION								
D. COAL MILL FAN	5,300	262	19.66	13.3	270	300	90	20.23	18.80	18.80	1.43		MET MED STOP								
													R 24492124								
*COAL_NILL:U1CLMI1	12,114	262	19.8A	13.2	734	1.888		46.24	42.0A	42.0A	4.24		OF SUBILIARS								
	and the second	202	10.00			11000		191.61					MET GS PORTR								
CONTRACT ON CONTRACT	40.444	060	10.60	12.2	640			46.04			10.01		38 \$3235.0124								
CONTRICT OVERALL	12,114	202	19.00	13.3	010			40.24			40.24		ST #JGILIAD								
													NOT THE PARTY								
*COAL MILL:OVERALL	12,114	262	19.66	13.3	616			46.24			46.24		1998.4 (92.08								
												Ŧ	MAE EXCTUD								
4 3											4 1		GRIE DORTS	25,200,000	2155, 580, 680						
													REAL REPORT OF THE								
									SAPMSSY	'O 🖪 cbe6sci	i INS 📿	11.	POWER SALE								
			_									975	THAC POWER TO FLACE	30, 100,000	11009260.000	380, 190, 080	22646051.000	000.000	20,000.004	1	

Gate	Systen Delp)								_	ADITYA BIRLA			-						
	• 4 🗉 ℃	CARDON CARDON<		Snecifi	c En	erov	Con	sum	ntio	n(SE	()	11/00	2022							
International product Specific Energy Consumption (SEC) 11/08/202 Prover Clinkerisation Line-1 Line-2 Line-3 International product Specific Energy Consumption (SEC) 11/08/202 Prover Clinkerisation Line-1 Line-2 Line-3 International product Specific Energy Consumption (SEC) 11/08/202 Internation Specific Energy Consumpt		2022																		
											Distances -							-		
y Report										1										
			CRED II	FORD, SUBSID	REFERE								line f.			line 1			line 2	
			Cenero Re	astectaring D	05150.08						a		riue-1			une-2		Line-5		
			VERCENT C	SEC 10005							Power - Clinkerisation									
													Act	Act		Act	Act		Act	Act
	STE Sector For	MR 2 million	177 Act 114	173 Carl Deser	173 Carller	Mit Course Day	MTA Buellane	MIT No. To .	MTD To show as	MTD To without	(Kwh/Clinker)	Rudget	1100			The Prop	1100	Rudget	- mil	1144
		1,60.01	1,60,01	and the factor	6.8-		26,210.01	26,200,00-	ner statistica	1.73-	franteniner	Duuger	Tadau	day MTD	Duuget	Today	MTD	Dunger	Today	MTD
	658, 200, 02	\$2,502.02	59,60.0	3.3	8.8	24, 825, CH. 30	3, 517, 481, 62	21,705,505,60	82.05	:5.N			Toudy	עווא		TUUdy	INIT		loudy	NIIU
	14,200,00		9.20.0	6.0	1.0	2,75,600,00		2,755,500,00	12.05	6.3		10.25			1.80			1.1.1.1		1.1
											1. Crusher	2.83	3.29	3.12	2.83	3.29	3.12	2.83	3.29	3.12
cal.	30,2010	\$120.0	690,000,00			21.21,6X.X	1,513,581,00	24,407,505,60				NOT ON			1.1.26	2.014	A second	- 7.55	12.00.00	10.000
y Report											2 Raw Mill	21.05	21 22	21 42	21.22	21 27	22.00	21 28	22.10	22.08
a sista	TRAINE HOLE										2. NUN INII	21.33	11.11	21,43	11.11	11.37	23.03	21.00	22.10	22.00
											2 Controll	0.00	4.05	4.17	1.51	1 20	101	2.47	171	1.00
	WTI JORG	BYL TRUCK	UNIX DORY	IRC: Total	e USTR 100	Section Street	e UNTN DORS	S UES TODATE	10641 3068	TORL TODAR	3. COQI MIII	3.38	4.85	4.27	3.55	4.29	4.03	3.47	4.51	4.09
			F83,000	28,161,100	RELIE RELIE	25,100.000			1,60,000	56,203,203 20,203,203	10 10 a	72.52		125 2	1967/6	0.577		-	12.000	
	940,000,000	15259580.000	345,030.000	12334060.000		-			RE 201.003	21426263.003	4. Kiln	24.96	28.15	25.44	2436	26.74	24.81	24.00	25.98	24.60
	215, 201,003	201400-000 2083-368-000	1,355,000 361,550,000	10,90,500 10874151,000					2, 403, 303 557, 453, 363	21,403,003 21708519.000	a can	-	LUILU		- 100			- 100		E HAA
											5 Mice	0.01	2.13	3.11	2.11	3 13	2.11	2 12	2.12	2.11
											J. MIDL	3.42	3.23	3.21	J.42	3.23	341	3.42	3.23	3.21
											6. Shut Down Pre Linker	0.00	0.00	0.00	3.12	0.00	0.00	1.24	0.00	0.00
	16.80,90	2151, 500, 641							35.20,20	205,40,20										
		and merche							1, 11, 11, 14, 14, 14, 14, 14, 14, 14, 1		Total	56.73	60.74	57.47	59.08	58.91	58.26	56.34	5911	57.10
2	335, 155, 365	13559366.000	300, 190, 000	20846051.000	860.00	25, 100.000	-		\$20,060.000	21407009.000			AAN 4	anni		AAIA V	00.00	00101		VIIAV

Daily Power Report – Through SAP

Power Summary Report – Through SAP

Daily Energy review in Production meeting

Team Work & Employee Involvement

03/08/2022

03/08/2022

VC01-KAI-202300265-205-RELIABILITY IMPROVEMENT-NEW

06/08/2022

Navin Goel

1

Filter By

Confluence is a software developed & utilised throughout UltraTech where all are able to see and share Suggestion & kaizens with other units.

Submitted to SC

Sharing of Idea across UTCL at "I Love my UltraTech" Platform

Awards & Certifications

22nd National Award for Excellence in Energy Management 2021

This is to certify that

UltraTech Cement Ltd, Vikram Cement Works, CPP has been recognized as

"Energy Efficient Unit" This acknowledgement is based on the evaluation by the panel of judges at the "National Award for Excellence in Energy Management" held during 24 - 27 August 2021.

> K S Venkatagiri Easestw Dentar Cill - Gadeg CillC

Vikram Cement Works received "National Award for Excellence in Energy Management 2021"

Sustainability Award -2020

Learning from CII & Other Award function

Learning :

Due to team effort, we were able to learned

- \Box Improving knowledge of the process and new technology.
- $\hfill\square$ Implementation of best practices learned from CII or other award function
- □ Learned Project planning & Execution, Application engineering,
- \Box Increased technical competency of young engineers was added advantage.
- □ Enhanced uses of various QC tools, Analysis & presentation skill
- □ Reduced the project cost by utilizing internal resources and manpower

Sharing:

The Success Story of same shared among our group units of UltraTech & Idea Sharing Platform "I Love My UltraTech"

"Alone we can think so little; together we can think a lot"

Thanks for Your Sincere & Kind Attention

Presented By: UltraTech Cement Ltd Vikram Cement Works